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Light propagation through birefringent, nonlinear media with deep gratings
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We present a theory that includes birefringence in the description of one-dimensional photonic band-gap
materials with a Kerr nonlinearity. The Bloch functions in the absence of nonlinearity completely characterize
the linear problem, for deep as well as shallow gratings, and the method of multiple scales is used to include
the effects of nonlinearity and finite optical pulse length. We derive two sets of equations appropriate in
different frequency regimes, a set of coupled mode equations and a set of coupled nonlinédingehro
equations; we investigate the connections between these equations and where their regimes of validity overlap.
Finally, we use our results to describe energy exchange between polarization modes in a birefringent medium.

PACS numbdis): 42.79.Dj, 42.81.Gs

[. INTRODUCTION the properties of such structures. We note, too, that experi-
ments in the literature, such as the all optisab gate dem-
In recent years, much effort has been devoted to the stuggnstrated by Tavernest al. [9], require a coupled mode for-

of one-dimensional photonic band-gap materials in the preghalism for their convenient analysis, as will other
ence of a Kerr nonlinearitjl—6]. A great deal of the experi- experiments aimed at exploiting polarization and nonlinear-
mental work in this field has concentrated on fiber Bragg®
gratings, which typically have refractive index variations on
the order of 104 [7—9]. With such small index variations, it
is reasonable to apply the heuristic coupled mode equation
or the appropriate nonlinear Scklinger equation, to analyze

experimental resultf6,7]. However, index changes as high tions (CNLSE) in the presence of birefringence. We use

as 0.04 have been reported in fibgid], and experiments Bloch theory to characterize the linear, birefringent problem,

egpfggé?l f]tc_?ﬁgsze?'Sctzrrfsu%tg\r/ewsgfﬁC?elﬁﬁesia?ag?ng:fgnd the method of multiple scales to include the nonlinearity
prop ) y ciently 'arg .~"“and finite pulse width. Both the birefringence and nonlinear-
contrasts so as to cast doubt on the validity of the heunstlci‘t are assumed to be weak, in a sense to be made precise
coupled mode equations. In a recent paper, a coupled mo low '

the.ory was developed that accounts fo_r strong gratings, In The outline of this paper is as follows. In Sec. Il we
which the index contrast varies over a significant fraction of . . o« the finear properties of a one-dimensional. birefrin-
the average background index, with a Kerr nonlinediy gent, periodic medium. In Sec. Illl we introduce the method

In this paper we seek tq extend. the stron.g gr.atlng, nonlmbf multiple scales, which we then use in Sec. IV to derive a
ear coupled mode formalism to include birefringence. Al-

though optical fibers are nominally isotropic, the process o et of coupled nonlinear Sctitinger equation, and in Sec. V
ugh optical Tibt ally | pIC, P o derive a set of of coupled mode equations. In Sec. VI we
writing a grating introduces a birefringence on the order OfdiSCUSS the connection between the nonlinear ‘3hger

76 . . .
10 . [12]. Birefringence has the ef_fect_ of separatlng_ the ph(.)'equations and the coupled mode equations, and their respec-
tonic band gaps of the two polarizations so that, in certai

frequency ranaes. liaht of one polarization can. propa atine regions of validity. In Sec. VIl we present numerical
q y ges, g P propagale;, jations that verify the connections discussed in Sec. VI.

freely while the other is blocked. This has immediate de.leteWe also investigate the phenomenon of nonlinear energy ex-
rious consequences for proposed devices based on circul

o : . : . 8tr1ange in the context of the CNLSE, and present an analytic
polarization, where the linearly polarized signals are mixed

. ; model to describe that effect.
The robustness of nonlinear effects, such as soliton forma-

tion and propagation through grating structures, has yetto be |, | |NEAR EQUATIONS AND BASIS FUNCTIONS

studied in the presence of birefringence. The dynamics here

can be expected to be more complicated than in a bare opti- We begin with the linear Maxwell equations in the pres-
cal fiber. In a bare optical fiber the two polarizations haveence of a dielectric tensor that is a function of only one
different group velocities, but can be considered to suffeiCartesian component=g(z). We assume that thex(y)
equal dispersiof13]; this is not generally valid in the pres- coordinates can be chosen such that forzahe tensor is
ence of a grating. In addition to fiber experiments, semicondiagonal, e =diad(e«(2),£yy(2)). Neglecting magnetic ef-
ductor wave guides with ®) nonlinearity, which possess fects by setting the permeability equal to that of free
TE and TM modes with different group velocities and dis- spaceu = uo, we can then define indices of refraction asso-
persions, and which can have large index contrasts, hawdated with polarization along the& and y axes, niz(z)
been studied experimentall§1]. Although our formalismis =¢g;(2)/e,, Wheree, is the permittivity of free space and
strictly one dimensional, it provides a qualitative insight intowhere, for the remainder of the text, the indebuns overx

In a previous paper we reported weak-grating coupled
mode equations for pulses in a nonlinear, birefringent, peri-
odic medium[14]. This paper includes derivations for three
Rets of equations: weak- and strong-grating coupled mode
equations(CME), and coupled nonlinear Schiinger equa-
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andy. We seek field€(r,t),H(r,t) that depend only on the

coordinatez. To proceed, we introduce local mode ampli-

tudesA, , [5] according to

-+ 1 nX(Z) Hy(zlt)
A =5 Exz,t)xZ 1
X 2 nO X( ) 0 nx(Z) ( )
+ 1 n (Z)- HX(Zrt)
Al =2\ 2 Elz,) FZy—r|,
y 2N ng | (2D Zo ny(2)

where ng is a reference refractive index and,

= (uoleo)*?is the impedance of free space. Using Eq.in
Maxwell's equatlons we can derive the differential equations
that theA" fields satisfy,

. OA;
I —==Mi-Aj, 2
with the column vectors
Af(z1)
= , 3
LAY ©
the matrix differential operators
d 1/d[Inni(z)]
" Tich 2\ ez ,
1 1/dInni(2)] a - @
2 0z iz

wherec is the speed of light in vacuum, and the index ma-

trices

©)

ni(z)|

The similarity between our Eq&2) and those of de Sterke

et al. [5] allows us to proceed in a manner analogous to

theirs, except for the complication of having bothandy

polarized fields. The idea is to assume an harmonic time

dependence'“xi for the A, fields, and then formally solve
for thez dependence in terms of the eigenvectdrs of the
matrix n; M

Perlod|c structures.‘l’o find the W ,; the particulare(z)
must be specified. Since we assum@) is periodic with
period d, e(z+d)=¢(2z), we can use Bloch’'s theorem to
construct the¥ ,; [15]. To connect with other literature it is
convenient to write thel,; in terms of the corresponding
solutionsé¢ ,i(2) for the electric field itself which satisfi5]

azqs,u(z) .
972 @uill

(2 ¢,i(2), (6)

wherew ,; is considered positive, and are of the form

(@)

whereu,i(k;z+d) =uni(k;2); that is, theu,i(k;z) have the
periodicity of the lattice. Note that the index has been
replaced by a discrete band indexand a reduced wave

bmi(k;2)=e*uyi(k;2),
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numberk, (—w/d<k=/d). If we seek¢,,(k;z) that sat-
isfy periodic boundary conditions over a normalization
lengthL, thenk must be of the form zp/L wherep is an
integer. We denote the associated eigenfrequengigk).

For each polarization the Bloch functions are orthogonal
through the metrin?(z),

JOL¢>TM(k’;Z)n?(Z)qﬁmi(k;z)dz:Nﬁmfmﬁkrk, (8)

where the normalization constaxt=L/d has been chosen to
facilitate passage to tHe—oo limit. In terms of theg,i(k;z)
we find[5]

v l(k)_{‘/’;\i(k;z)} ©
™ mik;z) |’
with
1
Umi(ki2)= 5| \i(2) dmi( ki 2)
_ ic 1 ddmi(kiz)
) Jni(z) 92 ] (10

Properties of the dispersion relation such as group velocity
and group velocity dispersion at a givemk point, for a
given polarization, can be determined via thke-p expan-
sion” [5]. The use of thal,,;(k) is preferred over the use of
the usualg,,i(k;z) because the former leads to a much sim-
plerk-p expansion and a much simpler implementation of a
multiple scales analysis. We here simply give the key results.
The velocity matrix element ,q)(k), at wave numbek
associated with bandsand g and associated with polariza-
tioni is defined as

1

__iﬁ(
2\ wpi(k)

[ana

The group velocity and group velocity dispersion are given
by

Upg(i)(K)
C

b
wqi(k)

0¢q.( ) 11)

, dwmi(k)
wmi(k)E dk :Umn(i)(k) (12)
and
o dPomik) _ Uiy (K) Upmeiy (K)
()= = = -
dk? prm whi(K) = 0mi(k)
(13

We note that the sum in Eq13) goes over positive and
negative frequencigd6].

III. NONLINEARITY AND MULTIPLE-SCALE ANALYSIS

Having characterized the linear problem in the presence
of birefringence, we now turn to the inclusion of nonlinear-
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ity. In the presence of a nonlinear polarizati®(r,t)
=XxP{*(z,t) +yP)"(z,t), the Maxwell equations become

. IA;
|ni(2)7:Mi'Ai+Bi, (14)
where
5 [ PNt 1 5
' 2eoVngni(z) 9t (1)
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For illustrative purposes, consider a trial solution of our
nonlinear equations of the form:

Ai = fpi(ki ;Zat)q’pi(ki)

+ ) foi(ki iz We(k) be @ikt cc, (20)
cEp

where thep subscript indexes a large principal component
with band indexp and wave vectok and thec subscript

indexes smaller companion components with band index

To describe the nonlinear polarization we adopt a nondisper;ng wave vectok. If f . is not varying over too short a

sive Kerr model

Pi(r,)=soX{AE; (N DET,DE(TD,  (16)
with i,j,k,I =x,y. It is clear that this form of the nonlinear
polarization will couple theA; vectors. Of course, the Kerr
model(16) is only a reasonable assumption if the intensitie
involved are not large enough that higher order susceptibili
ties need also be included. We refer to this as the weakl
nonlinear regime.

Multiple-scale analysisWe would like to use the nonlin-

ear equatior{14) to treat pulses described by envelope func-
tions that are slowly varying in time and space relative to a

distance and the nonlinear effects are not too strong, in a
sense to be made more precise below, then we would expect
that even the nonlinear Maxwell equations could be approxi-
mately satisfied by having;(k; ;z,t) acquire a time depen-

dence that involves variations on the order of time scales

SIong compared to 1J,(k;). Of course, small corrections

must be expected to this description, which we see below can
e described by adding small amplitudes of other Bloch
unctionsW;(k;).

To implement this strategy, we write

foikizt)=aFD(kz1,2, ..ty ..0), (22)

carrier frequency and lattice period respectively. One method

of carefully accounting for the effects of a “weak nonlinear-
ity” and “slowly varying” pulses is the method of multiple
scalegd5,6]. This method requires the introduction of several
time and space scales via a smallness paramgg&t. One
can then write a typical function as

f(z,t)=F(z, 9z, %%z, ... t,gt, 5%t, .. .), (17

fa(kizt)=ay, pFO(Kzy,25, ...t ts, ... 0.
=1

The quantity “a” has been introduced to characterize a typi-
cal amplitude of the fields; it is set such that mg)(k) are
dimensionless and of order unity.

To set up Eq(14) for a multiple scales analysis, we cast
it in terms of these newly defined variables,t,,. This can

whereF is assumed to vary equally significantly as each ofbe done quite generally, without specifying whether there is

its spatial arguments varies over a given rahgmnd each of
its temporal arguments varies over a given periodThe
multiple scales of the problem are defined by

z,= 7"z, (18
tp= 7Pt.
Using EQ.(18) in Eq. (17) we find
f(z,t)=F(z9,21,25, . . . to,t1,ts, .. ) (19
and
of  IF JF ) JF
E:ﬂ_Zc)+7](9_21+77 {9—22+ (20
Jf  oF JF JoF

— et p—t Pt
at oty oty T oat,

For our purposes, the characteristic length stasethe lat-
tice period and the characteristic time scaleris2m/w,

one or more principal component & . We find

9 )
i A = (0) _ i A +B:
in; [2‘,1 o (A= M VJZl 7 og | AL
(23
where
V ¢ 0 24
and
. d 1(d[Inn;(zo)]
N 2 9z,
M@=
! 1/d[Inny(zy)] d
2 9z, 9z,
(29

We would like to solve Eq(23) in successive powers of
7, SO we must characterize the nonlinearity in termgofo

wherew, is on the order of a typical carrier frequency. Thesedo so, we set a typical componexffy) (z) equal toxy ¥(2),
quantities represent the shortest length and fastest time scalebere y(z) is of order unity and dimensionless. Then the

in the problem. One can see from Ed8) that thez,,t,

quantity yy.@?> can be considered to characterize the

account for field variations over successively longer lengtH'strength” of the nonlinearity. If the valug, a? is of order

and time scales.

7° with s=1,2, .. . ,then the intensity index of the nonlin-
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5: Q . FIG. 1. Dispersion relations in the vicinity of
&4 el Q the Bragg wave vector. There are two situations:
e . Ky (@) A carrier frequencyw,, for which there is one
_______ Tk principal component for each polarization. The
7 R N frequency gives a different wave-vector for each
B Q. Q. polarization, which accounts for birefringence.
E B e P (b) A carrier frequencyw, in the bandgap; here
s | M o, one would use two principal components. In this
2 o e o, (k) case the pulse is carried by the average of the
£ e S o (k) Bragg frequencies shown, which accounts for the
- « T o, birefringence. The mismatch between the inci-
%‘ T | T dent frequency and the Bragg frequencies can be
T included in the slowly varying amplitudes. The
& N quantitiesQ, ,Qy andQ,, ,Q,, are detuning pa-
. rameters used in Sec. VI. The quantity is the
k,- 'ng ' ;10 ' ko+I2Kx grating strength parameter, defined in Sec. V.
Wave number (k)
earity iss, and the leading term iB; will be of order »°. 2n,
Although the solution to Eq(23) can, in general, be pushed (SAV)i:m“pi(ki 12, Pwpi(k)). (28

to higher powers ofy, it is not reasonable to take the analy-
sis past the intensity index. This is because the nonlinearityf
has itself been approximated; to include higher orderg of
we would have to include higher susceptibilities in Et).

his equation(28) suggests a field definition

2ngw) (KA
X(z)=\ 2 kazt), (29
Z d PXATIX
IV. ONE PRINCIPAL COMPONENT; S =2 o€
For a pulse that is not too short, with carrier wave vector 2ngw’ (k) A
away from the center or edges of the band structure, we seek Y(z,t)= \| YTl iz,
a description in terms of one principal component for each Zycd P

polarization; a sufficiently long pulse, with a correspond-

ingly narrow frequency content, can be detuned at the band@here Ay is an effective cross-sectional area in they)
edge, or even slightly within the gap and still be reasonablyplane associated with the problem. TKeand Y fields are
described by one principal componelit7]. The birefrin-  defined such thalX|? is the power in thex-polarized field
gence introduces a wave numk& mismatch between the and|Y|? is the power in the-polarized field.

two polarizations, each of which is carried at the same fre- To deal with the nonlinearity, we assume here an intensity
quency (), as shown ir(a) of Fig. 1. We write our fields as index s=2, which means that our nonlinearity enters the
equations at the same scale as the grating group velocity
dispersion. Under this assumption our eigenvalue equation

A =1 Tpi(kisZ,)Wpiki) (23) becomes

+ 2 foilki;z)We(k) e enllotce., (26) in;-
c#p

i-ﬁ- 1i+ Zi A
gt Tty T gty
wherew,,,(k,) = w,y(ky). We stress that although the carrier
frequencyw,(k;) is the same for both polarizations, the de-
rivatives will, in general, be unequal.

_ Equations describing light in periodic, Kerr-nonlinear me-\yhere the nonlinear term; enters at order?. Note that to
dia are often presented in terms of the electric field or gyqer,° Eq.(30) is satisfied because at that order one simply
similar quantity[6]. We here opt to rewrite ouh field in recovers the linear eigenvalue equati@h To complete the
terms of quantities directly comparable to power, becausgna|ysis we collect terms first ipt and then,?2, which gives
this is the most readily accessible experimental quantity. Usys two sets of equations for each polarization. By combining
ing the form of theA; fields in the definition of the Poynting ihese equations we can extract a set of CNLSE in a manner

J
=[M§°)—V771——V -A+B;, (30

2 %
iz, 7 9z,

vector analogous to that presented by de Stezkel.[5]. We find,
1
S=E@z )X H(z,1), (o7 toordern,
we find, using the velocity matrix elements, and group ve- |—x= — i’ (K )% (31)
locity expressions given by Eqéll) and (12), that we can aty P 9z,

express the time and space average of the Poynting vector to
o(7nh) as and similar forY. From the»? order equations we find
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TABLE I. Coefficients for the CNLSE. Thg values are deter- 2
mined by interchangin Y N Lo i
y ging«<y. OZ'E'H(‘)py(ky)E_'— Ewpy(ky)g

x 3 ZoClopy 4 4 +H{alol Y2+ alpy] X[ZHY + afoXPY* e M

dspm meodzo)(xxxx( Z)|pr( Ky ;ZO)| SPM CPM P ’
ff
i The quantity

ag S 102Xy 2K 20) Pl Ky 2002

CPM 4 wr,’yo‘eﬁ 0920 X xxy px\Kx 240 pylKy 2o A= Z(ky_ kx) (35)

3 Zycdwyy characterizes the birefringence in the system. The coeffi-

2
ake 4 o Ay 13820y 2) Uy (Ky :20) Uy (y: 20) cientsa are so subscripted becausgp), accounts for self-

P phase-modulationpcpy accounts for cross-phase modula-
tion; and apc accounts for phase conjugation. We note that
equations similar t¢34) have been studied extensively in the
literature[13,18-21.

9X _ ,(k)a 1, (k)azx
I—— = 1w (Ky) =0 = S0 Ky)
Itz P iz, 2P 7 V. TWO PRINCIPAL COMPONENTS; S =1

[2ngwpAe) 1 (L + s ()t ~ We now turn to describing pulses whose carrier frequen-
+ W TNJ’O dZo‘I’pkx' Bye B0, cies are in or very close to a photonic bandgap, either at the
7 band center or the band edge.(b) of Fig. 1, we show the
(32 case where the frequency of the pulse is within the photonic
bandgap. The pulse can, however, be detuned outside the
The quantityB; is defined in Eq(15), but we only need to bandgap and still be well described by the theory presented
write the electric-field contributions 1, to orderz° to keep  here(see Sec. VL As discussed above, this situation often
Eq. (32 self-consistent; recall that the nonlinear susceptibil-requires the use of two principal components in the descrip-
ity is of order 2, so the last term in Eq32) will be of order  tion of our fields. We set the reference wave number to be
7°. The form of the nonlinear susceptibility has been choserthe same for thex andy polarizations; the frequency mis-
as that of an isotropic medium, but in principle agy®) ~ match between the Bragg frequencies of the two polariza-
tensor could be used. We note, though, that the birefringendéons accounts for the birefringence. We find that a deriva-
is considered small because of a limitation imposed by oution of the coupled mode equations only requires us to carry
method, discussed after E§3). Thus, since the effect of the our results through to ordep®, so we simply write ourA
nonlinearity itself is already considered small, the deviationdields as
in x® due to lack of isotropy will typically be of the next
lowest order inz, and hence can be ignored. The overlap Ai(ZD=1fui(z1,22, .. ity ta, - ) Wui(ko)

integral in Eq.(32) is evaluated as (21,2, ot )\P,-(ko)}e*i&wc c
1 1 LR ] ’ L 1 gl

[2now’ A d 4 +0(7?), (36)
0W pyAeft f ‘I’;rnx' B el “podz, (7n
ZOCd 0

wherek, is the wave vector at the band ed@ssumed in
- X 2y X 2y X ek2:2i (kg Ky )z Fig. D or band center. The quantitidg; and f;; modulate
=~ aspul X[ "X~ acpy] YI"X— apoX™ Y7 TE, Bloch functions associated with the upper and lower band of
(33)  the given polarizatiom, respectively; both are principal com-

_ ponents in the sense defined above. The carrier frequency,
where we note that the quantig? "% has not been  common to both polarizationsy =% (woy+ wgy), is the av-
integrated because we assume thigt-(k,) = 7K, whereK  erage of the Bragg frequencies of the two polarizations,
is of the order of the average wave numbk%% ky)/2 In wOi:%(wui_l—wli)! where Wy is the frequency associated
this case P(ky—ky)zo=2i7Kzy=2iKz,. Sincez; andz,  ith the lowest point of the upper band ang is the fre-
are considered to be independent variables the quantitfyency associated with the highest point of the lower band
e?y"%)% remains. The value of the coefficients are  on the dispersion relatiofFig. 1).
given in Table I. By using our expression fak; (36) in the matrix equation

We now relate our scaled derivatives to full time and23) we find, to orders?,
space derivatives. Assembling Ed20), (31), ( 32), (33),

and noting that the equations for tidields can be derived Of i , afy 1 (d . et
by interchangingx<y in the preceding, we obtain the fol- 'Tl:"uifui_'l’ul(i)d_ZlJr ;fo Wi-Bie™io, (37)
lowing coupled nonlinear Schdinger equations:
fy; : i L9 4 it
X X , X 'E:Unfn—lvlu(i)a—zlJr;JO‘I’ui'Bie o,
0=i —+prx(kx)5+ Ewpx(kx)_

ot 972 _
where we have used the definitions;,;= w,,,i— @, where

2 2 2 i .. . .
+H{aSpM X2+ el YIZIX+ apcY?X* €™, (34 4, ando; are of orderwg, ; this is equivalent to assuming
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that the bandgap is small relative to the carrier frequency, i vgiNo 5 )

i.e., (wyi— ;) wg;<1. Note that we can satisfy this condi- =7 cq UGz~ [Gi=[7. (41
tion and still have a strong grating in the sense we have 0

discussed here. Since we are only carrying the calculation to

order 7, Eq. (37) become This expression suggests a definition
(wui_;)fui"_aui(zrt;fuxvfuyaflxvfly)zoa X

120 53No. A .
. gzx Cod Ef-fGXieJrlﬁtM, (42)
(39) °
0”f|' af i — 2Ug nerﬁ .
a—tIJFUgia—;l_(wn_w)fnJr9|i(2,t?fux'fuyyf|x,fly)zoa Y. \/ﬁGy:e o4,

where

Ofyi afy;
Tt Ve

where A« has been defined following E¢29), and where
V=iV =—10u) (39)  the exponential factoe™'** has been included in anticipa-
tion of the form of the final equations, with
and the functiond(z,t;fy,fuy . fix,fiy) represents the com-
plicated overlap integrals in EG37).

0=2(wpx— woy)- 43)
We now introducd 22] (@0~ woy) (
Gy = (i Fif /2, (400  Thisis equivalent to using the Bragg frequenaiggto carry
- theX..,Y. fields. These new fields are travelling waves nor-
Gy = (fyFif )/ 2. malized such that the quantitiegX( |?—|X_|?),(]Y.|?

—|Y_|?) represent the power in each polarization. Using the
From the definition of the Poynting vectd27) and using definitions(40) and(42) in Eq. (38), and evaluating the over-

Maxwell’s equations we find, t@®(7°) lap integrals, we can write our full coupled mode equations
PoIXe | OXs 2 2 2 2 2
OZU_ ot i|W+KxX:+aS{|X:| +2| X [P X e+ @ X[ 7+ X2 [} X 5 + ag{ X XE + X XEFX .+ apXEXE
gx

+BolY < [P+ Y= X+ BHIY <[P+ Y2 X+ B YL Y 2+ YEY )X+ BIX YEY =+ BEXS YL Y .

FLRYEH275Y Y=+ Y X+ (YA + YE )+ 25Y . Yo)XE e (44
|
The appropriatg equations for tive. can be found by inter- 1 wZocd (d
chang_mgX<—>Y in Eq. (44) and changingd— — §. In these Yoars~ 1600 A f (Bxxxyy(2)
equations the value gyVgxeffJ 0

X ¢pu(2) qy(2) dri(2) psy(2)dz.
' 2v4; The indicesp,q,r,s can take on the valudsu, that is, they

index the upper and lower bands. Notice that in the defini-
accounts for the grating strength, a@daccounts for the tiOns of Byq.s andyjq, the values of the Bloch functions in

Strength of the intrinsic birefringence. the integral alternate betWeamndy. The CoeffiCientS Of the
The coupling coefficientsa, 3,y} have a rather involved X coupled mode equatiori¢4) are shown in Table II. The
definition. We start by defining y values of the coefficients can be found by switchirgy

in Eq. (46), and in Table II.
3 7 o Weak grating limit of the CMBMany fiber gratings have
x _° wZycd (d % * small index contrasts, which allows us to simplify the
Ypars™ 16 02 Aeﬁfo X0k 2) Ppx(2) bax(2) bix(2) dsx(2)dZ coupled mode equatior(g4) by considering a weak grating
o (46)  of the form

L 1 wZcd Nn;(z)=n;+ én; cog 2kyz), (47

qurs_g mjo (3Xxxy>(2)) -
wheren; is the_background indexgn; is the index modula-
X ¢pu(2) bax(2) d1,(2) dsy(2)d2, tion with on;<n;, andk, is the wave number that defines
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TABLE II. x coefficients for the CME. The y values are deter- 1 ov®z
mined by interchanging«y. == _1—0,
2 nynyCAgg
Coeff. Value Weak grating -
— 1 wx®z,
3wX ZO ’)/XZ—__—_
X X 4o X 4o e 4
2] (auuuu 2auull aIIII) 4ﬁ>2<C.Aeff anyCAeff
o (— X yust ) 0 The grating coefficient is
ol (o= 6+ ) 0
2 uuuu uull il 1 5ni - (51)
Ki=F — 7.
— 2 d
1 wX(S)ZO n;
B)(() (Bﬁuuu+ﬁﬁull+ﬂl>(luu+ﬁlxlll) E . . . .
Ny C At Again, theY. equations can be found by switching-y
B5 (=B uuu=Blun+ Bliuu+ Bin) 0 and 6— — & in Eqgs.(49) and(50), from which we note that
1 wyd2z, Bx= By and y,= vy . o
B> (= Bluwuu® Biun= Bliuu T Biin) Prnea For a very weak birefringence, wheng~n,, the coeffi-
Xyt cients in Eqg.(50) are in the ratio{a: 8:y}={3:2:1}. In the
B3 (Bluwu Biun= Biiwu T Bin) 0 i imi i i i
3 wuuu™ Puull™™ Piluu™ Pl stationary limit these equations agree with those given by
Bﬁ (,33*4,3|xu|u) 0 Samiret al.[23].
,35 (,83+4BIqu) 0
VI. CONNECTING THE CNLSE AND THE CME
1 wx® . . .
Vs (Y wuu— Vo= Y+ i 4700 42(—20 In the previous sections we derived two types of equa-
My CAest tions: a set of coupled nonlinear Sctilger equations, typi-
71 (= Yiuuu™ Yo = Yiua ™ Yin) 0 cally valid outside the bandgap, and a set of nonlinear
Vs (= Y wur— Yo+ Yt i) 0 coupled mode equations, typically valid within or near the
1 oy9z, bandgap. As we will see in this section, the coupled mode
Y3 (Yawuu™ Yo+ Y+ vin) = equations make very definite predictions about the dispersion
My Aeit relation and the Bloch functions of the periodic system.
s (Yéuuu™ Yo Vit Vi = 4%1u) 0 When these predicted Bloch functions and dispersion rela-

tion deviate from the true values of the system, then the

approximations that have been used to derive the coupled

the band edge. In the presence of a weak grating, the Blochogde equations have broken down; this allows us to deter-
functions at the band edge can be evaluated, and normalizégine the limits of validity of the equations. On the other

via Eq. (8), hand, the nonlinear Schiimger equation relies on the local

5 properties of the dispersion relation, so if the nonlinearity is
NI B sufficiently small it should always be valid as long as one is
Puilko;2) =1 V _2d5|r1(koz), (48 sufficiently far away from a bandgap, or other portion of the
dispersion relation with significant higher-order curvature. If
2 the frequency content of a pulse is very narrow, then higher
#ii(Ko;2) = \/—Tcoikoz)- order dispersion will have little effect, so the Sctiirger
n; equation should be valid at the band edge and even slightly
) inside the band gap.
If we use these forms for the Bloch functions and assume a A fyrther point to be discussed is how the solutions to the
uniform nonlinearity, then many of the coefficients in the hopjinear Schidinger equation relate to those of the coupled
c_oupled_ mode equatlor(idé_l) are |d_en_t|cally zero. We con-  mode equations. Understanding this allows us to identify the
firm, using Eq.(11), that in this limit the quantityvq; iS  range where either approach could be used, an important
simply equal to the group velocity in the absence of theyoa| pecause although the coupled mode equations are easily
grating,v4;=c/n;. With this in mind we rewrite Eq(44) as  solvable via numerical techniques, they are difficult to solve
analytically. As mentioned, there is a great deal of work in
the literature on equations similar to our CNLEE,18-21,
so if we understand how solutions of the CNLSE are related
to solutions of the CME, then the CNLSE literature becomes
+BAIY P+ Y P X e+ BXEYEY available to aid in the investigation of birefringence phenom-
ena near the gap. Specifically we want to know how to relate

oM Xe L Xe o
_Cﬂt_laz Kxiax{|:| |1|}i

* \/2 * i
FydXEYLH2XIYL Y e, (49 the two CNLSE fieldsX andY, to the four CME fieldsX .
with andY. , and we want to get a sense of how close to the gap
we must be before the CNLSE cease to effectively describe
3 ;X(s)zo the problem. Our method is to start with the weak grating

(50 nonlinear coupled mode equations and perform a further

=7 = ,
4 nicAe multiple scales analy-
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sis to derive the nonlinear Schilinger equations. The use of ~ From these eigenvectors one can extract the Bloch func-
the weak grating equations simplifies the mathematics, antions of the periodic structure, in the coupled mode equations
does not significantly affect the final results, for reasons distimit. Comparing to the form of the Bloch functior{g), we
cussed below. The method involved follows closely thefind

analysis of de Sterke and Sip@], except that in the present

case the nonlinear terms are much more involved, so we only

1
sketch the results. biyi(ki2)= [Vi*pF /11pie—2ikoz]eikz'
We define \ /2dﬁi2
(58)
X+(z,t)} Y. (z,1) "
= , F.= , 5 )
X (zh) VlY-(zt) 52 where the factor i 2dn? has been included for proper nor-

malization via Eq(8). The function multiplyinge’** can be

with which the linear portion of the coupled mode equationsidentified asu(yi(k;2).

can be written as If we include the nonlinearity, then we can write the
coupled mode equations as

d n; d
io® —+|—0' —+ot Kij

g n . d
iod E+|_0' E—'—U ki |Fi+N;=0, (59
where we have used the Pauli spin matrices
where N; is the nonlinear term that follows immediately
01:(0 1) 03:<1 0 ) (54) from Eq. (49). For simplicity we concentrate on detuning
1 0/ 0 1)’ into the upper band};, (Q;). We represent our field vector
F; as beingmostlyin the upper band, but with a small com-
and the unit matrixs®. We seek solutions of E453) of the ~ ponent in the lower band. We start by writing the field vec-
form F;=f,e(?i=1=Qi2) where the wave vector detuning is tors as
Q;=k;—ko. If the full frequencyw;> wq;, then we call the
detuning paramete®;, and otherwise we call if); _ , with 1
Q. =w;—wy. The Q. are associated with the upper and Fi=\/——[7lai(2n?tn)fi(+)(Qi)+ 72bia(z0 ;) (Q)
lower band via the dispersion relation Pi

_ + (et (Q) - Je e (@ogier,
20,.(Q)= =+ Q. (55 (60

where we have introduced the multiple scales variahles,

as in Eq.(18). The upper-band componeat dominates the
expansion ofF;, and hence plays the role of a principal
component; theb; terms are companion components. The
numerical value of the detuning®, ,;(Q;) andQ;, will be

which follows from substituting th&; in Eq. (53). From the
dispersion relation, the group velocity, and group velocity
dispersion are

Q. (Q)= dQ;. _ c ? Q different for each polarization, but in each case we are de-
= dQ FI (O tuning to the same frequenay, as shown in(a) of Fig. 1.
The normalization factor 1Jp; has been introduced so that
420, 2 the envelope functiong; will be directly related to power.
O'.(Q)= = :( ) —p2(Q)], (56) Since the nonlinearity involves only cubic-type terms or
- dQ? i higher, we can write
wherep;(Q) =n;Q/, (Q)/c is the ratio of the group velocity Ny=7°Nyg+- - -. (61)

at a given wave vector for a point in theperband, relative
to the group velocity in the absence of the grating. TheTo evaluateN,; we combine Eqs(52), (57), (60), from

eigenvectors have the form which it is apparent that to lowest order in

() Vi+p,
f$+’(Q>={ === A X.= 2L \J oL a2 itye 0 @0 00,

21 V2l =V1-pi(Q) AR

(62)

Q)= ] 1 Jl—pi(@}

f( ) \/E /1+—Pi(Q) ! Y+:t%( llipy ay(zn;tn)efi9y+(Qy)te+iQyz_

y

where thef(*)(Q) are associated with th€;. , respec-
tively. Then, using Eq(62) in Eqg. (61), we find
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a |a |2a TABLE lll. Parameters used in numerical simulations.
N,e " 10+ (Qtog~1Qxz= M(300_pxo3)f§(+) =
2p,\px Index of refraction () 1.50
Index modulation §n) 1.67x10 *
2
a,|“a J1-p2 — = _
+ Bulayla ( P Py 01) £ Birefringence (,—n,) 2x10°°
Py\/g 2 Nonlinear index ,; W/cn?) 2.3x10°16
1 Bragg wavelengttinm) 1052.00
Y. .
+ —Xa§a§ e+|)\Z(§(O_O+pyO.3)
PyNPx

and similar forY. We have used Ed62) for a,. Hence, our
fields X,Y anda,,a, are equivalent. Using the Bloch func-
tions (58) we can show that the coefficients given above Eq.
(65) agree with those in Table I.

N

where\ is the birefringence parameter quoted earl(igs).

Note that to order* the forward and backward going fields VII. NUMERICAL SIMULATIONS

X. are associated with the multiple scales envelope function . . ) ) ) :

a,. This means that, were we to use the strong grating equa- The simulations are intended to illustrate two points. First,

tions, the form ofNg; would be the same, but the values of W€ demonstrate the validity of.the.CNLSE_approxmanon

the coefficients would change. However, since the values ofith respect to the CME approximation, as discussed in Sec.
the weak grating Bloch functions are known, it is straight-!- Second, we investigate the effect of energy exchange
forward to compare the nonlinear Sétilnger equation de- between the two polarizations, which may be of importance

rived from the weak grating CME, to the weak grating In the development of new devices. For the sample calcula-
CNLSE. ' tions, we used paramaters of a typical optical fiber, given in

Using this nonlinear operator in E¢6.17) of de Sterke 1able ll.
and Sipg[6] allows us to write down the CNLSE:

), (63)

A. Comparing the CNLSE and CME

0o i P igr Bl @ﬂx* Ia,/% To compare the CNLSE and the CME equations, we con-
at Xt gz 0 27X g2 SPMZE X sider a pulse propagating through a grating with parameters
. given in Table 1, using each set of equations. We solve the
+apylayl?act apajary e, (64)  CNLSE by a split-step Fourier technique: At each time step
the linear portion of the equations are solved in the Fourier
da, ., da, 1 C;Zay y ) domain, while the nonlinear portions are solved using a
0=i 7+'Qy+ o7 §Qy+ F+QSPM|ay| ay fourth order Runge-Kutta integration schefd®]; we solve
Egs.(64) in a frame travelling with the average velocity of
+ atpy ax|2ay+a%ca)2(a; e Nz the two pulses. The CME are solved using a collocation al-
gorithm[24].

whereQ)/, , andQ/, are the group velocity and group ve- To define a frequency control parameter, we first define a
locity dispersion at the given detuniri§6), and the nonlin-  total band-gap width
ear coefficients are

_ n—
Sw=(woy— woy) + =,
« _C [3p] Y

FSPM— = Bx (65 §
X J— J—
) where it has been assumed that<ny, so that oy
) c [ZJF (1_p§)(1_p§)} i;g)oy)>0. In terms of these we define the frequency detun-
a == ,
CPM nx X Zpy B
A . w—w
L _C (<1+pxpy>+2 (1—px)(1—py)] " ow
dpc™= Vx 2 .
Ny Py . .
wherew is the carrier frequency of the pulse.
The coefficient465) lead to the concept of agffective non- We start with simulations using the values ®dfgiven in
linearity because their values are dependen€othe detun-  Table Ill. The initial intensity was 1.10 G W/cmin each
ing from the Bragg wave vector. polarization, the initial pulse was a Gaussian with a full

To connect Eq(64) to the CNLSE given by Eq34), we  width at half maximum(FWHM) pulse width 200 ps, and
recall that both theX..,Y.) fields used by the CME, and was chosen such that the initial frequency content to the
the (X,Y) fields used by the CNLSE are normalized suchpulse did not extend into the gap. Table IV compares the
that their square moduli represent power. If we wish to convelocities observed by the CME and the CNLSE for the
nect the CNLSE and CME fields we require that polarization after 3000 ps of simulation time, from which it

can be seen that both algorithms predict the same velocity
IX|2=|X,[2=|X_|?=]ay/? (66)  even very close to the band gap.



5754 SURESH PEREIRA AND J. E. SIPE PRE 62

TABLE V. Comparison of velocities between the CME and

---------- NLSE
CNLSE algorithms. 125
A CME CNLSE g
®
1.05 0.306 0.313 £
1.10 0.420 0.425 = @
1.20 0.555 0.555 £075 T . T )
1.30 0.625 0.625 g 0 1000 2000 3000
. . . :
1.40 0.700 0.700 on
1.50 0.740 0.740 >C‘
2
Figure 2 compares the pulse shapes ofxipmlarization, H
after 2000 ps of simulation time fax=1.20 andA =1.10. It 075 , . . , . (b)
can be seen that although the two algorithms agree very 0 00 e s) 2 3000
closely for A=1.20, atA=1.10 the differences are more
marked. Figure 3 compares the total energy injtpelarized FIG. 3. Comparison of the energy in the y polarization as pre-

pulse as a function of time fak =1.20,1.10 using both nu- dicted by the CME and NLSE fde) A=1.20 andb) A=1.10. The
merical techniques. The data &t=1.20 is much more con- plots are normalized such that atQ@ the energy is 1.0. Although
sistent than af =1.10. The initial ringing for the CME data neither detuning gives an exact agreement, the divergenca for
is a consequence of our initial conditiof4], but it damps = 1.10 is significantly greater.

out quite quickly.

There are two reasons why the derivation in Sec. Viwhere Tgyyy is the pulse width; ifLpz~Lp,, then third-
would fail. First, the CME includes all orders of dispersion, order dispersion effects become important. We thus have a
while the CNLSE includes only second order dispersioncriterion onTgyyy that
Second, the CNLSE derivation assumes that there is but
slight build up of reflected waves which, as one nears the 5
band gap, is decreasingly accurate. To quantify the effect of Tewnm> Q. (69
the first objection, we calculate the quantity '

for third-order effects to be ignord@6].
To quantify the second limitation we nof@5] that a
Gaussian pulse with a giveheyyy has a frequency width

" =ini _ _QQi,+Qi”+ 67)
17 dQ QL

in terms of which the expressions for second- and third-order @1/ =1.665M ey - (70
dispersion lengths, assuming a Gaussian pulse,2aie
Thus, for a given carrier frequenay, the frequency spec-

) trum of the pulse will extend into the band gap if
T Q_VS -|—3 Q_r4
L. = _FWHMI P+ _ TRWHMR i+ 69)
D2 ’ D3 mo? — —
2.77307, 4.6180{", (0= wye)<(w+dw). (71

1.8- (a) 1.8-

1.6 1.6

1.4 1.4
127 — 127
£ E i
L 404 L o FIG. 2. Comparison of the CME and NLSE y
(% | % | polarization pulse profiles after 2000 ps of simu-
= 0.8 = 08 lation time for(a) A=1.20 and(b) A=1.10. Itis
‘® R evident in(b) that the two algorithms are giving
c c N
o 06 & 064 different results.
£ ] £ !

0.4 1 0.4

0.2+ 0.2

0.0 T T T 0.0
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1.6 0.20 1

1.2 0.15
Ng Ng FIG. 4. Pulse profiles after 500 ps simulation
§ § time for initial pulse widths ofl@) 50 ps andb)
@ 087 o 0104 10 ps. It is clear that the 10 ps pulse is experienc-
2 = ing a great deal of higher order dispersion under
2 2 the CME.
[ [0
= £

0.4 0.05

(@)
0.0 —— 7T T—T1 1 000 T T T T A
3 2 4 0 1 2 3 3 2 4 0 1 2 3
z (cm) z (cm)
However, as the pulse frequency nears the gap, it will, of +2|Y(z,1)|?
course, experience higher-order dispersion as well as, even- qy(t):f U—dZ,
Cw v

tually, reflection, so that this criterion is not completely dis-
tinct from the one pres_ented in the preceding paragrr_alph: and we note that

We present simulations to underscore the first objection.
We use a grating with the physical parameters in Table lIl, ar=0x+dy, (73
and a pulse with initial intensity 1.50 G W/énand detuning
A=2.00. We concentrate on a single polarization, since biis a constant of the motion. We recall that our fields are
refringence is incidental to the higher order dispersion. Usingiormalized such thai|?,|Y|? represent power, but E¢64)
the criterion(69) we find thatT pyuw=12.5 ps. In Fig. 4 we is best suited for integration in time, so that the natural quan-
plot the simulated pulse profile after 500 ps of simulationtty to calcula,te is that in Eq(72). The factors ofuvy
time using both the CME and CNLSE foTayy of 50 and = 2x+» vy=0y., Eq. (64), are necessary to maldg,q,
10 ps. It can be seen that the 10 ps pulse experiences a gré&aergles. _ _
deal of higher-order dispersion. We note that only a small Using the form for the energy in thepolarized puls&72)
amount of reflected waves build up in this simulation, so thatVe can calculate
the second objection is irrelevant. We note, too, that since we

have not attempted to simulate a soliton, the self-phase %:—'a—gcfw[sz*ze‘“—cc]dz (74)
modulation will tend to increase the frequency spectrum of at Uy J-o e
the pulse, so that eventually the results of the two integra-
tions must diverge. 9%q ok +
X PC

) [Em2abd X YP)]
X —

B. Energy exchange between the polarizations o2
We now consider the nonlinear energy exchange between X (Y2X* 2624 c.c)dzt 4—

polarizations in the context of the CNLSE. Referring to Fig. Ux

3, we see that for the parameters being used the energy in

each polarization follows, to some approximation, a cosinu- Xf IXIPIY[2(1X]2=]Y]?)dz, (79

soidal pattern. We present here a simple model to explain

this for the case of light initially polarized at 45° to the where

principal axes, and having a power and pulse width similar to

that of a soliton in an isotropic medium. The full dynamics (vyxtuoy)

of energy exchange are quite complicated, so we here con- &= 2

centrate on determining the period of oscillation, and the

amount of energy transferred during the first oscillation pefor small birefringencesn<1, so e*?~cosf2)~1. We

riod. _ - write our fieldsX andY as
To discuss energy exchange we define the quantities

X(z,t)=X,(z,t)e' ", (76)

- 2
gy(t)= : Mdz, (72 .
Jloo Ux Y(z,t)=Y,(z,t)e, (77)
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where the function;(z,t), Y,(z,1t) are real, and they, , 0.20 = Numerics
describe phase accumulation, which here is assumed inde ;| Theory
pendent of space, and linear in time. Using these approxima
tions in Egs.(74) and(75) we find © 010
&qx a)I;C e 2 2 . . 7
W:_Z f YiXF“sin(yt)dz=asin(yt), (79 0.00 : , (@)
Ux J —e 107 10°
15000
7°q ape [+
=2 | [E-2apdXE-Y)I(YIX cogyydz g
at x J—o 3
=b cogyt), 79 &
b
wherea andb have been defined implicitly, and where 010_, T Bretngence '1(-)_5 )
v=2(vy= ¥ (80) FIG. 5. Comparison of the period and strength of the nonlinear

energy exchange in the CNLSErsusthe theory presented in the

Note that in going from Eq<.75)—(79) we have ignored the dpaper, for a detuning af — 1.50.

third term in Eq.(75). This is because we are only intereste

in the dynamics during the first oscillation period, during 5 _ 1 g5 initial peak intensity of 0.55 G Wi/chin each po-
;v:\;\?gstzhsrr:gr;nclcs>sisr$2|cl>ifjoarl ?;igsgimf)rsagfdmtg;?ﬁ' Welarization, and various values of birefringence. At lower de-
- tunings there is an increased tendency to pulse separation;
T and, since the nonlinearity is higher, the approximation that
Gx(1)=ax(1 = o cosyb), (81) the fields pick up spatially independent phase is no longer
— good. Higher energy exchange values correspond to
1+ iacosﬂ higher periods, which means that devices wishing to exploit
y ’ the energy exchange would have to trade off between device
length and amount of energy exchanged.

Qy(t) :ay

where, by conservation of energ?y=qT—@, and wherey
is the period, andr is the strength, of the oscillation. VIIl. CONCLUSION
By comparing the derivatives of the ans&8d) with the

approximation(78),(79), we can identify the two quantities Ve have discussed the propagation of light through a

strong grating structure in the presence of birefringence and

b a2 a Kerr nonlinearity. The effect of the birefringence is to
y=—, o=—. (82 separate the photonic band gaps associated with the two po-
a axb larizations. Far from the photonic band gaps, and even near

. the gaps if the pulses are not too short, the electromagnetic
To evaluate the quantitiesandb, we make the further ap-  fie|q°can be well described by two coupled nonlinear $chro
proximation that only theamplitudeof the real part of the  yinger equations, one associated with each polarization. Here
pulse changes, not the spatial profile. In the following weyhe situation is somewhat similar to propagation in a one-
assume a sech profile for our pulses dimensional(1D) structure without a grating, with the dis-
¢ persion due to the underlying material medium. But the grat-
X,(z,t)=X(2) sec){ _> ez, (83) ing structure is richer in two respects. First, the two
T polarization modes can have both different group velocities
and different group velocity dispersions, whereas in uniform
el n? (84) 1D structures differences in the group velocity dispersions
' can typically be neglected. Second, the effective nonlinearity
] . ) ] ] is a function of the carrier frequency of the pulse, since it
Using these fields in the approximate expressiti® and  gepends on how the appropriate Bloch function samples the
(79) for the time derivatives, we can evaluate the expectegjistribution of nonlinearity in the underlying medium.
value of botho and Y, the former as the root of a quadratIC At carrier frequencies close to the gap or within the gap,

— t
Y. (z,t)=Y(2) sec?(_l_—o

equation, and the latter as a functionaaf the electromagnetic field is described by two sets of coupled
4 4 mode equations. The analog of a coupled mode description
0=7.87a§,C7302+a(—aéC73—§)——a’gcvg, in the_ absence of birefringe_nce, here there is one pair of

3 3 equations for each polarization. For a range of parameters

either set of equations can be used, and we identified the
conditions required for this and confirmed them with numeri-
cal examples. We also showed how the nonlinear Schro
dinger equations could be used to provide a simple under-
whereY is the initial amplitude of the pulse. The validity of standing of one scenario of energy exchange between the
these approximations is demonstrated in Fig. 5 for a detuningvo polarizations. It is clear from this, as well as from the

16
y=¢- g earcYolo—o’l, (89)
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general form of the equations we derive, that whole newunexplored territory of birefringent, nonlinear photonic
regimes of nonlinear phenomena can appear when birefriband-gap structures.

gence exists in 1D photonic band-gap structures, including

all-optical switching geometries that have no analog in iso- ACKNOWLEDGMENTS
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