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Light propagation through birefringent, nonlinear media with deep gratings
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Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7
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We present a theory that includes birefringence in the description of one-dimensional photonic band-gap
materials with a Kerr nonlinearity. The Bloch functions in the absence of nonlinearity completely characterize
the linear problem, for deep as well as shallow gratings, and the method of multiple scales is used to include
the effects of nonlinearity and finite optical pulse length. We derive two sets of equations appropriate in
different frequency regimes, a set of coupled mode equations and a set of coupled nonlinear Schro¨dinger
equations; we investigate the connections between these equations and where their regimes of validity overlap.
Finally, we use our results to describe energy exchange between polarization modes in a birefringent medium.

PACS number~s!: 42.79.Dj, 42.81.Gs
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I. INTRODUCTION

In recent years, much effort has been devoted to the s
of one-dimensional photonic band-gap materials in the p
ence of a Kerr nonlinearity@1–6#. A great deal of the experi
mental work in this field has concentrated on fiber Bra
gratings, which typically have refractive index variations
the order of 1024 @7–9#. With such small index variations, i
is reasonable to apply the heuristic coupled mode equati
or the appropriate nonlinear Schro¨dinger equation, to analyz
experimental results@6,7#. However, index changes as hig
as 0.04 have been reported in fibers@10#, and experiments
employing etched semiconductor wave guides have b
proposed@11#. These systems have sufficiently large ind
contrasts so as to cast doubt on the validity of the heuri
coupled mode equations. In a recent paper, a coupled m
theory was developed that accounts for strong gratings
which the index contrast varies over a significant fraction
the average background index, with a Kerr nonlinearity@5#.

In this paper we seek to extend the strong grating, non
ear coupled mode formalism to include birefringence. A
though optical fibers are nominally isotropic, the process
writing a grating introduces a birefringence on the order
1026 @12#. Birefringence has the effect of separating the ph
tonic band gaps of the two polarizations so that, in cert
frequency ranges, light of one polarization can propag
freely while the other is blocked. This has immediate dele
rious consequences for proposed devices based on cir
polarization, where the linearly polarized signals are mix
The robustness of nonlinear effects, such as soliton for
tion and propagation through grating structures, has yet to
studied in the presence of birefringence. The dynamics h
can be expected to be more complicated than in a bare
cal fiber. In a bare optical fiber the two polarizations ha
different group velocities, but can be considered to su
equal dispersion@13#; this is not generally valid in the pres
ence of a grating. In addition to fiber experiments, semic
ductor wave guides with ax (3) nonlinearity, which posses
TE and TM modes with different group velocities and d
persions, and which can have large index contrasts, h
been studied experimentally@11#. Although our formalism is
strictly one dimensional, it provides a qualitative insight in
PRE 621063-651X/2000/62~4!/5745~13!/$15.00
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the properties of such structures. We note, too, that exp
ments in the literature, such as the all opticalAND gate dem-
onstrated by Taverneret al. @9#, require a coupled mode for
malism for their convenient analysis, as will oth
experiments aimed at exploiting polarization and nonline
ity.

In a previous paper we reported weak-grating coup
mode equations for pulses in a nonlinear, birefringent, p
odic medium@14#. This paper includes derivations for thre
sets of equations: weak- and strong-grating coupled m
equations~CME!, and coupled nonlinear Schro¨dinger equa-
tions ~CNLSE! in the presence of birefringence. We u
Bloch theory to characterize the linear, birefringent proble
and the method of multiple scales to include the nonlinea
and finite pulse width. Both the birefringence and nonline
ity are assumed to be weak, in a sense to be made pre
below.

The outline of this paper is as follows. In Sec. II w
discuss the linear properties of a one-dimensional, biref
gent, periodic medium. In Sec. III we introduce the meth
of multiple scales, which we then use in Sec. IV to derive
set of coupled nonlinear Schro¨dinger equation, and in Sec. V
to derive a set of of coupled mode equations. In Sec. VI
discuss the connection between the nonlinear Schro¨dinger
equations and the coupled mode equations, and their res
tive regions of validity. In Sec. VII we present numeric
simulations that verify the connections discussed in Sec.
We also investigate the phenomenon of nonlinear energy
change in the context of the CNLSE, and present an ana
model to describe that effect.

II. LINEAR EQUATIONS AND BASIS FUNCTIONS

We begin with the linear Maxwell equations in the pre
ence of a dielectric tensor that is a function of only o
Cartesian component,«5«(z). We assume that the (x,y)
coordinates can be chosen such that for allz the tensor is
diagonal,«5diag„«xx(z),«yy(z)…. Neglecting magnetic ef-
fects by setting the permeabilitym equal to that of free
space,m5m0, we can then define indices of refraction ass
ciated with polarization along thex and y axes, ni

2(z)
5« i i (z)/«0, where«0 is the permittivity of free space an
where, for the remainder of the text, the indexi runs overx
5745 ©2000 The American Physical Society
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5746 PRE 62SURESH PEREIRA AND J. E. SIPE
andy. We seek fieldsE(r ,t),H(r ,t) that depend only on the
coordinatez. To proceed, we introduce local mode amp
tudesAx,y

6 @5# according to

Ax
65

1

2
Anx~z!

n0
FEx~z,t !6Z0

Hy~z,t !

nx~z! G , ~1!

Ay
65

1

2
Any~z!

n0
FEy~z,t !7Z0

Hx~z,t !

ny~z! G ,
where n0 is a reference refractive index andZ0
5(m0 /«0)1/2 is the impedance of free space. Using Eq.~1! in
Maxwell’s equations we can derive the differential equatio
that theAi

6 fields satisfy,

ini

]A i

]t
5M i•A i , ~2!

with the column vectors

A i5FAi
1~z,t !

Ai
2~z,t !

G , ~3!

the matrix differential operators

M i5F 2 ic
]

]z

1

2 S ]@ ln ni~z!#

]z D
2

1

2 S ]@ ln ni~z!#

]z D ic
]

]z

G , ~4!

wherec is the speed of light in vacuum, and the index m
trices

ni5Fni~z! 0

0 ni~z!
G . ~5!

The similarity between our Eqs.~2! and those of de Sterk
et al. @5# allows us to proceed in a manner analogous
theirs, except for the complication of having bothx and y
polarized fields. The idea is to assume an harmonic t
dependencee2 ivm i t for theA i fields, and then formally solve
for thez dependence in terms of the eigenvectorsCm i of the
matrix ni

21M i .
Periodic structures.To find theCm i the particular«(z)

must be specified. Since we assume«(z) is periodic with
period d, «(z1d)5«(z), we can use Bloch’s theorem t
construct theCm i @15#. To connect with other literature it is
convenient to write theCm i in terms of the correspondin
solutionsfm i(z) for the electric field itself which satisfy@5#

2c2
]2fm i~z!

]z2
5vm i

2 ni
2~z!fm i~z!, ~6!

wherevm i is considered positive, and are of the form

fmi~k;z!5eikzumi~k;z!, ~7!

whereumi(k;z1d)5umi(k;z); that is, theumi(k;z) have the
periodicity of the lattice. Note that the indexm has been
replaced by a discrete band indexm and a reduced wave
s

-

o

e

numberk, (2p/d,k<p/d). If we seekfmi(k;z) that sat-
isfy periodic boundary conditions over a normalizatio
length L, thenk must be of the form 2pp/L wherep is an
integer. We denote the associated eigenfrequenciesvmi(k).
For each polarization the Bloch functions are orthogo
through the metricni

2(z),

E
0

L

fm8 i
* ~k8;z!ni

2~z!fmi~k;z!dz5Ndm8mdk8k , ~8!

where the normalization constantN5L/d has been chosen t
facilitate passage to theL→` limit. In terms of thefmi(k;z)
we find @5#

Cmi~k!5Fcmi
1 ~k;z!

cmi
2 ~k;z!

G , ~9!

with

cmi
6 ~k;z!5

1

2 FAni~z!fmi~k;z!

7
ic

vmi~k!

1

Ani~z!

]fmi~k;z!

]z G . ~10!

Properties of the dispersion relation such as group velo
and group velocity dispersion at a givenm,k point, for a
given polarization, can be determined via the ‘‘k•p expan-
sion’’ @5#. The use of theCmi(k) is preferred over the use o
the usualfmi(k;z) because the former leads to a much si
pler k•p expansion and a much simpler implementation o
multiple scales analysis. We here simply give the key resu
The velocity matrix elementvpq( i )(k), at wave numberk
associated with bandsp andq and associated with polariza
tion i is defined as

vpq( i )~k!

c
52

ic

2 S 1

vpi~k!
1

1

vqi~k! D
3E

0

d

fpi* ~k;z!
]fqi~k;z!

]z
dz. ~11!

The group velocity and group velocity dispersion are giv
by

vmi8 ~k![
dvmi~k!

dk
5vmm( i )~k! ~12!

and

vmi9 ~k![
d2vmi~k!

dk2
522 (

p̃Þm

vmp̃( i )~k!v p̃m( i )~k!

v p̃i~k!2vmi~k!
.

~13!

We note that the sum in Eq.~13! goes over positive and
negative frequencies@16#.

III. NONLINEARITY AND MULTIPLE-SCALE ANALYSIS

Having characterized the linear problem in the prese
of birefringence, we now turn to the inclusion of nonlinea
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ity. In the presence of a nonlinear polarizationPNL(r ,t)
5 x̂Px

NL(z,t)1 ŷPy
NL(z,t), the Maxwell equations become

ini~z!
]A i

]t
5M i•A i1Bi , ~14!

where

Bi52
i

2«oAn0ni~z!

]Pi
NL

]t F1

1G . ~15!

To describe the nonlinear polarization we adopt a nondis
sive Kerr model

Pi~r ,t !5«ox i jkl
(3) Ej~r ,t !Ek~r ,t !El~r ,t !, ~16!

with i , j ,k,l 5x,y. It is clear that this form of the nonlinea
polarization will couple theA i vectors. Of course, the Ker
model~16! is only a reasonable assumption if the intensit
involved are not large enough that higher order suscepti
ties need also be included. We refer to this as the wea
nonlinear regime.

Multiple-scale analysis.We would like to use the nonlin
ear equation~14! to treat pulses described by envelope fun
tions that are slowly varying in time and space relative t
carrier frequency and lattice period respectively. One met
of carefully accounting for the effects of a ‘‘weak nonlinea
ity’’ and ‘‘slowly varying’’ pulses is the method of multiple
scales@5,6#. This method requires the introduction of seve
time and space scales via a smallness parameterh!1. One
can then write a typical function as

f ~z,t !5F~z,hz,h2z, . . . ;t,ht,h2t, . . . !, ~17!

whereF is assumed to vary equally significantly as each
its spatial arguments varies over a given rangel, and each of
its temporal arguments varies over a given periodt. The
multiple scales of the problem are defined by

zp5hpz, ~18!

tp5hpt.

Using Eq.~18! in Eq. ~17! we find

f ~z,t !5F~z0 ,z1 ,z2 , . . . ;t0 ,t1 ,t2 , . . . ! ~19!

and

] f

]z
5

]F

]z0
1h

]F

]z1
1h2

]F

]z2
1•••, ~20!

] f

]t
5

]F

]t0
1h

]F

]t1
1h2

]F

]t2
1•••.

For our purposes, the characteristic length scalel is the lat-
tice period and the characteristic time scale ist52p/v0,
wherev0 is on the order of a typical carrier frequency. The
quantities represent the shortest length and fastest time s
in the problem. One can see from Eq.~18! that thezp ,tp
account for field variations over successively longer len
and time scales.
r-
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For illustrative purposes, consider a trial solution of o
nonlinear equations of the form:

A
i
5H f pi~ki ;z,t !Cpi~ki !

1 (
cÞp

f ci~ki ;z,t !Cci~ki !J e2 ivpi(ki )t1c.c., ~21!

where thep subscript indexes a large principal compone
with band indexp and wave vectork and thec subscript
indexes smaller companion components with band indec
and wave vectork. If f pi is not varying over too short a
distance and the nonlinear effects are not too strong, i
sense to be made more precise below, then we would ex
that even the nonlinear Maxwell equations could be appro
mately satisfied by havingf pi(ki ;z,t) acquire a time depen
dence that involves variations on the order of time sca
long compared to 1/vpi(ki). Of course, small correction
must be expected to this description, which we see below
be described by adding small amplitudes of other Blo
functionsCci(ki).

To implement this strategy, we write

f pi~k;z,t !5aFpi
(0)~k;z1 ,z2 , . . . ;t1 ,t2 , . . . !, ~22!

f ci~k;z,t !5a(
j 51

h jFci
( j )~k;z1 ,z2 , . . . ;t1 ,t2 , . . . .!.

The quantity ‘‘a’’ has been introduced to characterize a typ
cal amplitude of the fields; it is set such that theFqi

( i )(k) are
dimensionless and of order unity.

To set up Eq.~14! for a multiple scales analysis, we ca
it in terms of these newly defined variableszn ,tn . This can
be done quite generally, without specifying whether there
one or more principal component inA i . We find

ini•H (
j 51

`

h j
]

]t j
J A i5H M i

(0)2V(
j 51

`

h j
]

]zj
J •A i1Bi ,

~23!

where

V5Fc 0

0 2cG , ~24!

and

M i
(0)5F 2 ic

]

]z0

1

2 S ]@ ln ni~z0!#

]z0
D

2
1

2 S ]@ ln ni~z0!#

]z0
D ic

]

]z0

G .

~25!

We would like to solve Eq.~23! in successive powers o
h, so we must characterize the nonlinearity in terms ofh. To
do so, we set a typical componentx i jkl

(3) (z) equal toxNLg(z),
where g(z) is of order unity and dimensionless. Then th
quantity xNLa2 can be considered to characterize t
‘‘strength’’ of the nonlinearity. If the valuexNLa2 is of order
hs with s51,2, . . . , then the intensity index of the nonlin
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FIG. 1. Dispersion relations in the vicinity o
the Bragg wave vector. There are two situation
~a! A carrier frequencyv1, for which there is one
principal component for each polarization. Th
frequency gives a different wave-vector for ea
polarization, which accounts for birefringenc
~b! A carrier frequencyv2 in the bandgap; here
one would use two principal components. In th
case the pulse is carried by the average of
Bragg frequencies shown, which accounts for t
birefringence. The mismatch between the inc
dent frequency and the Bragg frequencies can
included in the slowly varying amplitudes. Th
quantitiesQx ,Qy andVx1 ,Vy1 are detuning pa-
rameters used in Sec. VI. The quantitykx is the
grating strength parameter, defined in Sec. V.
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earity is s, and the leading term inBi will be of order hs.
Although the solution to Eq.~23! can, in general, be pushe
to higher powers ofh, it is not reasonable to take the anal
sis past the intensity index. This is because the nonlinea
has itself been approximated; to include higher orders oh
we would have to include higher susceptibilities in Eq.~16!.

IV. ONE PRINCIPAL COMPONENT; S Ä2

For a pulse that is not too short, with carrier wave vec
away from the center or edges of the band structure, we s
a description in terms of one principal component for ea
polarization; a sufficiently long pulse, with a correspon
ingly narrow frequency content, can be detuned at the b
edge, or even slightly within the gap and still be reasona
described by one principal component@17#. The birefrin-
gence introduces a wave number~k! mismatch between the
two polarizations, each of which is carried at the same
quency (v), as shown in~a! of Fig. 1. We write our fields as

A
i
5H f pi~ki ;z,t !Cpi~ki !

1 (
cÞp

f ci~ki ;z,t !Cci~ki !J e2 ivpi(ki )t01c.c., ~26!

wherevpx(kx)5vpy(ky). We stress that although the carri
frequencyvpi(ki) is the same for both polarizations, the d
rivatives will, in general, be unequal.

Equations describing light in periodic, Kerr-nonlinear m
dia are often presented in terms of the electric field o
similar quantity@6#. We here opt to rewrite ourA field in
terms of quantities directly comparable to power, beca
this is the most readily accessible experimental quantity.
ing the form of theA i fields in the definition of the Poynting
vector

S5E„z,t…3H~z,t !, ~27!

we find, using the velocity matrix elements, and group
locity expressions given by Eqs.~11! and ~12!, that we can
express the time and space average of the Poynting vect
O(h1) as
ty

r
ek
h
-
d

ly

-

-
a

e
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to

~SAV! i5
2n0

Z0cd
u f pi~ki ;z,t !u2vpi8 ~ki !. ~28!

This equation~28! suggests a field definition

X~z,t ![A2n0vpx8 ~kx!Aeff

Z0cd
f px~kx ;z,t !, ~29!

Y~z,t ![A2n0vpy8 ~ky!Aeff

Z0cd
f py~ky ;z,t !,

whereAeff is an effective cross-sectional area in the (x,y)
plane associated with the problem. TheX and Y fields are
defined such thatuXu2 is the power in thex-polarized field
and uYu2 is the power in they-polarized field.

To deal with the nonlinearity, we assume here an inten
index s52, which means that our nonlinearity enters t
equations at the same scale as the grating group velo
dispersion. Under this assumption our eigenvalue equa
~23! becomes

ini•H ]

]t0
1h1

]

]t1
1h2

]

]t2
J A i

5H M i
(0)2Vh1

]

]z1
2Vh2

]

]z2
J •A i1Bi , ~30!

where the nonlinear termBi enters at orderh2. Note that to
orderh0 Eq. ~30! is satisfied because at that order one sim
recovers the linear eigenvalue equation~2!. To complete the
analysis we collect terms first inh1 and thenh2, which gives
us two sets of equations for each polarization. By combin
these equations we can extract a set of CNLSE in a man
analogous to that presented by de Sterkeet al. @5#. We find,
to orderh1,

i
]X

]t1
52 ivpx8 ~kx!

]X

]z1
, ~31!

and similar forY. From theh2 order equations we find



bil

se

n
ou
e
n
t
ap

nt

nd

l-

ffi-

a-
at
e

en-
the

nic
the

ted
n

rip-
be
-
iza-
va-
rry

of
-
ncy,

ns,
d

nd

g

PRE 62 5749LIGHT PROPAGATION THROUGH BIREFRINGENT, . . .
i
]X

]t2
52 ivpx8 ~kx!

]X

]z2
2

1

2
vpx9 ~kx!

]2X

]z1
2

1SA2n0vpx8 Aeff

Z0cd
D 1

h2N
E

0

L

dz0Cpkx

†
•Bxe

ivpx(kx)t0.

~32!

The quantityBi is defined in Eq.~15!, but we only need to
write the electric-field contributions toBi to orderh0 to keep
Eq. ~32! self-consistent; recall that the nonlinear suscepti
ity is of orderh2, so the last term in Eq.~32! will be of order
h0. The form of the nonlinear susceptibility has been cho
as that of an isotropic medium, but in principle anyx (3)

tensor could be used. We note, though, that the birefringe
is considered small because of a limitation imposed by
method, discussed after Eq.~33!. Thus, since the effect of th
nonlinearity itself is already considered small, the deviatio
in x (3) due to lack of isotropy will typically be of the nex
lowest order inh, and hence can be ignored. The overl
integral in Eq.~32! is evaluated as

SA2n0vpx8 Aeff

Z0cd
D E

0

d

Cmx
†
•Bxe

ivpxt0dz0

52aSPM
x uXu2X2aCPM

x uYu2X2aPC
x X* Y2e2i (ky2kx)z0,

~33!

where we note that the quantitye2i (ky2kx)z0 has not been
integrated because we assume that (ky2kx)5hK, whereK
is of the order of the average wave number (kx1ky)/2. In
this case 2i (ky2kx)z052ihKz052iKz1. Since z1 and z0
are considered to be independent variables the qua
e2i (ky2kx)z0 remains. The value of the coefficientsa are
given in Table I.

We now relate our scaled derivatives to full time a
space derivatives. Assembling Eqs.~20!, ~31!, ~ 32!, ~33!,
and noting that the equations for theY fields can be derived
by interchangingx↔y in the preceding, we obtain the fo
lowing coupled nonlinear Schro¨dinger equations:

05 i
]X

]t
1 ivpx8 ~kx!

]X

]z
1

1

2
vpx9 ~kx!

]2X

]z2

1$aSPM
x uXu21aCPM

x uYu2%X1aPC
x Y2X* eilz, ~34!

TABLE I. Coefficients for the CNLSE. They values are deter-
mined by interchangingx↔y.

aSPM
x 3

4

Z0cdvpx

vpx8 Aeff

*0
ddz0xxxxx~z!uupx~kx ;z0!u4

aCPM
x 3

4

Z0cdvpy

vpy8 Aeff

*0
ddz0xxxyy~z!uupx~kx ;z0!u2uupy~ky ;z0!u2

aPC
x

3

4

Z0cdvpy

vpy8 Aeff

*0
ddz0xxxyy~z!upy

2 ~ky ;z0!upx*
2
~kx ;z0!
-

n

ce
r

s

ity

05 i
]Y

]t
1 ivpy8 ~ky!

]Y

]z
1

1

2
vpy9 ~ky!

]2Y

]z2

1$aSPM
y uYu21aCPM

y uXu2%Y1aPC
y X2Y* e2 ilz.

The quantity

l52~ky2kx! ~35!

characterizes the birefringence in the system. The coe
cientsa are so subscripted becauseaSPM accounts for self-
phase-modulation;aCPM accounts for cross-phase modul
tion; andaPC accounts for phase conjugation. We note th
equations similar to~34! have been studied extensively in th
literature@13,18–21#.

V. TWO PRINCIPAL COMPONENTS; S Ä1

We now turn to describing pulses whose carrier frequ
cies are in or very close to a photonic bandgap, either at
band center or the band edge. In~b! of Fig. 1, we show the
case where the frequency of the pulse is within the photo
bandgap. The pulse can, however, be detuned outside
bandgap and still be well described by the theory presen
here~see Sec. VI!. As discussed above, this situation ofte
requires the use of two principal components in the desc
tion of our fields. We set the reference wave number to
the same for thex and y polarizations; the frequency mis
match between the Bragg frequencies of the two polar
tions accounts for the birefringence. We find that a deri
tion of the coupled mode equations only requires us to ca
our results through to orderh1, so we simply write ourA
fields as

A i~z,t !5$ f ui~z1 ,z2 , . . . ;t1 ,t2 , . . . !Cui~k0!

1 f l i ~z1 ,z2 , . . . ;t1 ,t2 , . . . !Cl i ~k0!%e2 i v̄t01c.c.

1O~h2!, ~36!

wherek0 is the wave vector at the band edge~assumed in
Fig. 1! or band center. The quantitiesf ui and f l i modulate
Bloch functions associated with the upper and lower band
the given polarizationi, respectively; both are principal com
ponents in the sense defined above. The carrier freque
common to both polarizations,v̄5 1

2 (v0x1v0y), is the av-
erage of the Bragg frequencies of the two polarizatio
v0i5

1
2 (vui1v l i ), where vui is the frequency associate

with the lowest point of the upper band andv l i is the fre-
quency associated with the highest point of the lower ba
on the dispersion relation~Fig. 1!.

By using our expression forA i ~36! in the matrix equation
~23! we find, to orderh1,

i
] f ui

]t1
5sui f ui2 ivul( i )

] f l i

]z1
1

1

hE0

d

Cui
†
•Bie

iwi t0, ~37!

i
] f l i

]t1
5s l i f l i 2 iv lu( i )

] f ui

]z1
1

1

hE0

d

Cui
†
•Bie

iwi t0,

where we have used the definitionshs l /ui[v l /ui2v̄, where
s l i andsui are of orderv0i ; this is equivalent to assumin
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that the bandgap is small relative to the carrier frequen
i.e., (vui2v l i )/v0i!1. Note that we can satisfy this cond
tion and still have a strong grating in the sense we h
discussed here. Since we are only carrying the calculatio
orderh, Eq. ~37! become

i
] f ui

]t
2vgi

] f l i

]z
2~vui2v̄ ! f ui1uui~z,t; f ux , f uy , f lx , f ly!50,

~38!

i
] f l i

]t
1vgi

] f ui

]z
2~v l i 2v̄ ! f l i 1u l i ~z,t; f ux , f uy , f lx , f ly!50,

where

vgi[ iv lu( i )52 ivul( i ) , ~39!

and the functionu(z,t; f ux , f uy , f lx , f ly) represents the com
plicated overlap integrals in Eq.~37!.

We now introduce@22#

Gx65~ f lx7 i f ux!/A2, ~40!

Gy65~ f ly7 i f uy!/A2.

From the definition of the Poynting vector~27! and using
Maxwell’s equations we find, toO(h0)
y,

e
to

SAV
i 5

2vgin0

Z0cd
$uGi 6u22uGi 7u2%. ~41!

This expression suggests a definition

X6[A2vgxn0Aeff

Z0cd
Gx6e1 idt/4, ~42!

Y6[A2vgyn0Aeff

Z0cd
Gy6e2 idt/4,

whereAeff has been defined following Eq.~29!, and where
the exponential factore6 idt/4 has been included in anticipa
tion of the form of the final equations, with

d52~v0x2v0y!. ~43!

This is equivalent to using the Bragg frequenciesv0i to carry
theX6 ,Y6 fields. These new fields are travelling waves no
malized such that the quantities (uX1u22uX2u2),(uY1u2
2uY2u2) represent the power in each polarization. Using
definitions~40! and~42! in Eq. ~38!, and evaluating the over
lap integrals, we can write our full coupled mode equatio
05
i

vgx

]X6

]t
6 i

]X6

]z
1kxX71a0

x$uX6u212uX7u2%X61a1
x$uX6u21uX7u2%X71a1

x$X6X7* 1X7X6* %X61a2
xX6

2 X7*

1b0
x$uY6u21uY7u2%X61b1

x$uY6u21uY7u2%X71b2
x$Y6* Y71Y7* Y6%X61b4

xX7Y6* Y71b5
xX7Y7* Y6

1@~g0
xY6

2 12g2
xY6Y71g4

xY7
2 !X6* 1~g1

x$Y6
2 1Y7

2 %12g3
xY6Y7!X7* #eidt. ~44!
ni-

e

s

The appropriate equations for theY6 can be found by inter-
changingX↔Y in Eq. ~44! and changingd→2d. In these
equations the value

k i5
vui2v l i

2vgi
~45!

accounts for the grating strength, andd accounts for the
strength of the intrinsic birefringence.

The coupling coefficients$a,b,g% have a rather involved
definition. We start by defining

apqrs
x 5

3

16

v̄Z0cd

vgx
2 Aeff

E
0

d

xxxxx~z!fpx* ~z!fqx~z!f rx* ~z!fsx~z!dz,

~46!

bpqrs
x 5

1

8

v̄Z0cd

vgyvgxAeff
E

0

d

„3xxxyy~z!…

3fpx* ~z!fqx~z!f ry* ~z!fsy~z!dz,
gpqrs
x 5

1

16

v̄Z0cd

vgyvgxAeff
E

0

d

„3xxxyy~z!…

3fpx* ~z!fqy~z!f rx* ~z!fsy~z!dz.

The indicesp,q,r ,s can take on the valuesl ,u, that is, they
index the upper and lower bands. Notice that in the defi
tions ofbpqrs

x andgpqrs
x the values of the Bloch functions in

the integral alternate betweenx andy. The coefficients of the
X6 coupled mode equations~44! are shown in Table II. The
y values of the coefficients can be found by switchingx↔y
in Eq. ~46!, and in Table II.

Weak grating limit of the CME.Many fiber gratings have
small index contrasts, which allows us to simplify th
coupled mode equations~44! by considering a weak grating
of the form

ni~z!5n̄i1dni cos~2k0z!, ~47!

wheren̄i is the background index,dni is the index modula-
tion with dni!n̄i , andk0 is the wave number that define
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the band edge. In the presence of a weak grating, the B
functions at the band edge can be evaluated, and norma
via Eq. ~8!,

fui~k0 ;z!5 iA 2

n̄i
2d

sin~k0z!, ~48!

f l i ~k0 ;z!5A 2

n̄i
2d

cos~k0z!.

If we use these forms for the Bloch functions and assum
uniform nonlinearity, then many of the coefficients in th
coupled mode equations~44! are identically zero. We con
firm, using Eq.~11!, that in this limit the quantityvgi is
simply equal to the group velocity in the absence of
grating,vgi5c/n̄i . With this in mind we rewrite Eq.~44! as

05 i
n̄x

c

]X6

]t
6 i

]X6

]z
1kxX71ax$uX6u212uX7u2%X6

1bx$uY6u21uY7u2%X61bxX7Y7* Y6

1gx$X6* Y6
2 12X7* Y6Y7%eidt, ~49!

with

ax5
3

4

v̄x (3)Z0

n̄x
2cAeff

, ~50!

TABLE II. x coefficients for the CME. The y values are dete
mined by interchangingx↔y.

Coeff. Value Weak grating

a0
x (auuuu

x 12auull
x 1a l l l l

x )
3

4

v̄x(3)Z0

n̄x
2cAeff

a1
x (2auuuu

x 1a l l l l
x ) 0

a2
x (auuuu

x 26auull
x 1a l l l l

x ) 0

b0
x (buuuu

x 1buull
x 1b l luu

x 1b l l l l
x )

1

2

v̄x(3)Z0

n̄xn̄ycAeff

b1
x (2buuuu

x 2buull
x 1b l luu

x 1b l l l l
x ) 0

b2
x (2buuuu

x 1buull
x 2b l luu

x 1b l l l l
x )

1

2

v̄x(3)Z0

n̄xn̄ycAeff

b3
x (buuuu

x 2buull
x 2b l luu

x 1b l l l l
x ) 0

b4
x (b3

x24b lulu
x ) 0

b5
x (b3

x14b lulu
x ) 0

g0
x (guuuu

x 2gulul
x 2g lulu

x 1g l l l l
x 14g lulu

x )
1

4

v̄x(3)Z0

n̄xn̄ycAeff

g1
x (2guuuu

x 1gulul
x 2g lulu

x 1g l l l l
x ) 0

g2
x (2guuuu

x 2gulul
x 1g lulu

x 1g l l l l
x ) 0

g3
x (guuuu

x 1gulul
x 1g lulu

x 1g l l l l
x )

1

4

v̄x(3)Z0

n̄xn̄ycAeff

g4
x (guuuu

x 2gulul
x 2g lulu

x 1g l l l l
x 24g lulu

x ) 0
ch
ed

a

e

bx5
1

2

v̄x (3)Z0

n̄xn̄ycAeff

,

gx5
1

4

v̄x (3)Z0

n̄xn̄ycAeff

.

The grating coefficient is

k i5
1

2

dni

n̄i

p

d
. ~51!

Again, theY6 equations can be found by switchingx↔y
andd→2d in Eqs.~49! and ~50!, from which we note that
bx5by andgx5gy .

For a very weak birefringence, wheren̄x'n̄y , the coeffi-
cients in Eq.~50! are in the ratio$a:b:g%5$3:2:1%. In the
stationary limit these equations agree with those given
Samiret al. @23#.

VI. CONNECTING THE CNLSE AND THE CME

In the previous sections we derived two types of eq
tions: a set of coupled nonlinear Schro¨dinger equations, typi-
cally valid outside the bandgap, and a set of nonlin
coupled mode equations, typically valid within or near t
bandgap. As we will see in this section, the coupled mo
equations make very definite predictions about the disper
relation and the Bloch functions of the periodic syste
When these predicted Bloch functions and dispersion r
tion deviate from the true values of the system, then
approximations that have been used to derive the cou
mode equations have broken down; this allows us to de
mine the limits of validity of the equations. On the oth
hand, the nonlinear Schro¨dinger equation relies on the loca
properties of the dispersion relation, so if the nonlinearity
sufficiently small it should always be valid as long as one
sufficiently far away from a bandgap, or other portion of t
dispersion relation with significant higher-order curvature
the frequency content of a pulse is very narrow, then hig
order dispersion will have little effect, so the Schro¨dinger
equation should be valid at the band edge and even slig
inside the band gap.

A further point to be discussed is how the solutions to
nonlinear Schro¨dinger equation relate to those of the coupl
mode equations. Understanding this allows us to identify
range where either approach could be used, an impor
goal because although the coupled mode equations are e
solvable via numerical techniques, they are difficult to so
analytically. As mentioned, there is a great deal of work
the literature on equations similar to our CNLSE@13,18–21#,
so if we understand how solutions of the CNLSE are rela
to solutions of the CME, then the CNLSE literature becom
available to aid in the investigation of birefringence pheno
ena near the gap. Specifically we want to know how to rel
the two CNLSE fieldsX andY, to the four CME fieldsX6

andY6 , and we want to get a sense of how close to the g
we must be before the CNLSE cease to effectively desc
the problem. Our method is to start with the weak grati
nonlinear coupled mode equations and perform a furt
multiple scales analy-
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sis to derive the nonlinear Schro¨dinger equations. The use o
the weak grating equations simplifies the mathematics,
does not significantly affect the final results, for reasons d
cussed below. The method involved follows closely t
analysis of de Sterke and Sipe@6#, except that in the presen
case the nonlinear terms are much more involved, so we
sketch the results.

We define

Fx5FX1~z,t !

X2~z,t !G , Fy5FY1~z,t !

Y2~z,t !G , ~52!

with which the linear portion of the coupled mode equatio
can be written as

F is3
]

]z
1 i

n̄i

c
s0

]

]t
1s1k i GFi50, ~53!

where we have used the Pauli spin matrices

s15S 0 1

1 0D , s35S 1 0

0 21D , ~54!

and the unit matrixs0. We seek solutions of Eq.~53! of the
form Fi5f ie

2 i (V i 6t2Qiz), where the wave vector detuning
Qi5ki2k0. If the full frequencyv i.v0i , then we call the
detuning parameterV i 1 and otherwise we call itV i 2 , with
V i 65v i2v0i . The V6 are associated with the upper an
lower band via the dispersion relation

n̄i

c
V i 6~Q!56Ak i

21Q2, ~55!

which follows from substituting theFi in Eq. ~53!. From the
dispersion relation, the group velocity, and group veloc
dispersion are

V i 68 ~Q![
dV i 6

dQ
5S c

n̄i
D 2

Q

V i 6
,

V i 69 ~Q![
d2V i 6

dQ2
5S c

n̄i
D 2

1

V i 6
@12r i

2~Q!#, ~56!

wherer i(Q)5n̄iV i 18 (Q)/c is the ratio of the group velocity
at a given wave vector for a point in theupperband, relative
to the group velocity in the absence of the grating. T
eigenvectors have the form

f i
(1)~Q!5F f i 1

(1)

f i 2
(1)G5

1

A2
FA11r i~Q!

2A12r i~Q!
G , ~57!

f i
(2)~Q!5F f i 1

(2)

f i 2
(2)G5

1

A2
FA12r i~Q!

A11r i~Q!
G ,

where the f i
(6)(Q) are associated with theV i 6 , respec-

tively.
d
-

ly

s

e

From these eigenvectors one can extract the Bloch fu
tions of the periodic structure, in the coupled mode equati
limit. Comparing to the form of the Bloch functions~7!, we
find

f (6) i~k;z!5
1

A2dn̄i
2

@A16r i7A17r ie
22ik0z#eikz,

~58!

where the factor 1/A2dn̄i
2 has been included for proper no

malization via Eq.~8!. The function multiplyingeikz can be
identified asu(6) i(k;z).

If we include the nonlinearity, then we can write th
coupled mode equations as

F is3
]

]z
1 i

n̄i

c
s0

]

]t
1s1k i GFi1Ni50, ~59!

where Ni is the nonlinear term that follows immediate
from Eq. ~49!. For simplicity we concentrate on detunin
into the upper bandV i 1(Qi). We represent our field vecto
Fi as beingmostlyin the upper band, but with a small com
ponent in the lower band. We start by writing the field ve
tors as

Fi5
1

Ar i

@hai~zn ;tn!f i
(1)~Qi !1h2bi2~zn ;tn!f i

(2)~Qi !

1h3bi3~zn ;tn!f i
(2)~Qi !1•••#e2 iV i 1(Qi )t0eiQiz0,

~60!

where we have introduced the multiple scales variableszn ,tn
as in Eq.~18!. The upper-band componentai dominates the
expansion ofFi , and hence plays the role of a princip
component; thebi terms are companion components. T
numerical value of the detunings,V1 i(Qi) andQi , will be
different for each polarization, but in each case we are
tuning to the same frequencyv, as shown in~a! of Fig. 1.
The normalization factor 1/Ar i has been introduced so tha
the envelope functionsai will be directly related to power.
Since the nonlinearity involves only cubic-type terms
higher, we can write

Nx5h3Nx31•••. ~61!

To evaluateNx3 we combine Eqs.~52!, ~57!, ~60!, from
which it is apparent that to lowest order inh

X656
h

A2
SA16rx

rx
D ax~zn ;tn!e2 iVx1(Qx)te1 iQxz,

~62!

Y656
h

A2
SA16ry

ry
D ay~zn ;tn!e2 iVy1(Qy)te1 iQyz.

Then, using Eq.~62! in Eq. ~61!, we find
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Nxe
1 iVx1(Qx)t0e2 iQxz5

axuaxu2ax

2rxArx

~3s02rxs
3!fx

(1)

1
bxuayu2ax

ryArx

S s02
A12ry

2

2
s1D fx

(1)

1
gx

ryArx

ay
2ax* e1 ilzS 1

2
~s01rys

3!

2A12ry
2s1D fx

(1) , ~63!

wherel is the birefringence parameter quoted earlier~35!.
Note that to orderh1 the forward and backward going field
X6 are associated with the multiple scales envelope func
ax . This means that, were we to use the strong grating eq
tions, the form ofN3i would be the same, but the values
the coefficients would change. However, since the value
the weak grating Bloch functions are known, it is straig
forward to compare the nonlinear Schro¨dinger equation de-
rived from the weak grating CME, to the weak gratin
CNLSE.

Using this nonlinear operator in Eq.~6.17! of de Sterke
and Sipe@6# allows us to write down the CNLSE:

05 i
]ax

]t
1 iVx18

]ax

]z
1

1

2
Vx19

]2ax

]z2
1aSPM

x uaxu2ax

1aCPM
x uayu2ax1apc

x ay
2ax* eilz, ~64!

05 i
]ay

]t
1 iVy18

]ay

]z
1

1

2
Vy19

]2ay

]z2
1aSPM

y uayu2ay

1aCPM
y uaxu2ay1apc

y ax
2ay* e2 ilz,

whereV i 18 , andV i 19 are the group velocity and group ve
locity dispersion at the given detuning~56!, and the nonlin-
ear coefficients are

aSPM
x 5

c

n̄x

ax

@32rx
2#

2rx
, ~65!

aCPM
x 5

c

n̄x

bxH 21A~12rx
2!~12ry

2!

2ry
J ,

aPC
x 5

c

n̄x

gxH ~11rxry!12A~12rx
2!~12ry

2!

2ry
J .

The coefficients~65! lead to the concept of aneffective non-
linearity because their values are dependent onQ, the detun-
ing from the Bragg wave vector.

To connect Eq.~64! to the CNLSE given by Eq.~34!, we
recall that both the (X6 ,Y6) fields used by the CME, and
the (X,Y) fields used by the CNLSE are normalized su
that their square moduli represent power. If we wish to c
nect the CNLSE and CME fields we require that

uXu25uX1u22uX2u25uaxu2 ~66!
n
a-

of
-

-

and similar forY. We have used Eq.~62! for ax . Hence, our
fields X,Y andax ,ay are equivalent. Using the Bloch func
tions ~58! we can show that the coefficients given above E
~65! agree with those in Table I.

VII. NUMERICAL SIMULATIONS

The simulations are intended to illustrate two points. Fir
we demonstrate the validity of the CNLSE approximati
with respect to the CME approximation, as discussed in S
VI. Second, we investigate the effect of energy exchan
between the two polarizations, which may be of importan
in the development of new devices. For the sample calc
tions, we used paramaters of a typical optical fiber, given
Table III.

A. Comparing the CNLSE and CME

To compare the CNLSE and the CME equations, we c
sider a pulse propagating through a grating with parame
given in Table III, using each set of equations. We solve
CNLSE by a split-step Fourier technique: At each time s
the linear portion of the equations are solved in the Fou
domain, while the nonlinear portions are solved using
fourth order Runge-Kutta integration scheme@19#; we solve
Eqs. ~64! in a frame travelling with the average velocity o
the two pulses. The CME are solved using a collocation
gorithm @24#.

To define a frequency control parameter, we first defin
total band-gap width

dv̄5~v0x2v0y!1
dn

n̄x

v̄,

where it has been assumed thatn̄x,n̄y , so that (v0x
2v0y).0. In terms of these we define the frequency detu
ing

D5
v2v̄

dv̄
,

wherev is the carrier frequency of the pulse.
We start with simulations using the values ofD given in

Table III. The initial intensity was 1.10 G W/cm2 in each
polarization, the initial pulse was a Gaussian with a f
width at half maximum~FWHM! pulse width 200 ps, and
was chosen such that the initial frequency content to
pulse did not extend into the gap. Table IV compares
velocities observed by the CME and the CNLSE for thex
polarization after 3000 ps of simulation time, from which
can be seen that both algorithms predict the same velo
even very close to the band gap.

TABLE III. Parameters used in numerical simulations.

Index of refraction (n̄x) 1.50

Index modulation (dn) 1.6731024

Birefringence (n̄y2n̄x) 231026

Nonlinear index (n2 ; W/cm2) 2.3310216

Bragg wavelength~nm! 1052.00
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Figure 2 compares the pulse shapes of thex polarization,
after 2000 ps of simulation time forD51.20 andD51.10. It
can be seen that although the two algorithms agree v
closely for D51.20, at D51.10 the differences are mor
marked. Figure 3 compares the total energy in they polarized
pulse as a function of time forD51.20,1.10 using both nu
merical techniques. The data atD51.20 is much more con
sistent than atD51.10. The initial ringing for the CME data
is a consequence of our initial conditions@24#, but it damps
out quite quickly.

There are two reasons why the derivation in Sec.
would fail. First, the CME includes all orders of dispersio
while the CNLSE includes only second order dispersi
Second, the CNLSE derivation assumes that there is
slight build up of reflected waves which, as one nears
band gap, is decreasingly accurate. To quantify the effec
the first objection, we calculate the quantity

V1 i- 5
dV1 i9

dQ
523

V i 18 V i 19

V i 1
, ~67!

in terms of which the expressions for second- and third-or
dispersion lengths, assuming a Gaussian pulse, are@25#

LD25
TFWHM

2 V i 18
3

2.772uV i 19 u
, LD35

TFWHM
3 V i 18

4

4.615uV i 1- u
, ~68!

TABLE IV. Comparison of velocities between the CME an
CNLSE algorithms.

D CME CNLSE

1.05 0.306 0.313
1.10 0.420 0.425
1.20 0.555 0.555
1.30 0.625 0.625
1.40 0.700 0.700
1.50 0.740 0.740
ry

I
,
.
ut
e
of

r

where TFWHM is the pulse width; ifLD3'LD2, then third-
order dispersion effects become important. We thus hav
criterion onTFWHM that

TFWHM@
5

V i 1
, ~69!

for third-order effects to be ignored@26#.
To quantify the second limitation we note@25# that a

Gaussian pulse with a givenTFWHM has a frequency width

v1/e51.665/TFWHM . ~70!

Thus, for a given carrier frequencyv, the frequency spec
trum of the pulse will extend into the band gap if

~v2v1/e!,~v̄1dv̄!. ~71!

FIG. 3. Comparison of the energy in the y polarization as p
dicted by the CME and NLSE for~a! D51.20 and~b! D51.10. The
plots are normalized such that at t50 the energy is 1.0. Although
neither detuning gives an exact agreement, the divergence foD
51.10 is significantly greater.
y
u-
FIG. 2. Comparison of the CME and NLSE
polarization pulse profiles after 2000 ps of sim
lation time for~a! D51.20 and~b! D51.10. It is
evident in~b! that the two algorithms are giving
different results.
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FIG. 4. Pulse profiles after 500 ps simulatio
time for initial pulse widths of~a! 50 ps and~b!
10 ps. It is clear that the 10 ps pulse is experien
ing a great deal of higher order dispersion und
the CME.
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However, as the pulse frequency nears the gap, it will,
course, experience higher-order dispersion as well as, e
tually, reflection, so that this criterion is not completely d
tinct from the one presented in the preceding paragraph

We present simulations to underscore the first object
We use a grating with the physical parameters in Table
and a pulse with initial intensity 1.50 G W/cm2 and detuning
D52.00. We concentrate on a single polarization, since
refringence is incidental to the higher order dispersion. Us
the criterion~69! we find thatTFWHM@12.5 ps. In Fig. 4 we
plot the simulated pulse profile after 500 ps of simulati
time using both the CME and CNLSE for aTFWHM of 50 and
10 ps. It can be seen that the 10 ps pulse experiences a
deal of higher-order dispersion. We note that only a sm
amount of reflected waves build up in this simulation, so t
the second objection is irrelevant. We note, too, that since
have not attempted to simulate a soliton, the self-ph
modulation will tend to increase the frequency spectrum
the pulse, so that eventually the results of the two integ
tions must diverge.

B. Energy exchange between the polarizations

We now consider the nonlinear energy exchange betw
polarizations in the context of the CNLSE. Referring to F
3, we see that for the parameters being used the energ
each polarization follows, to some approximation, a cosi
soidal pattern. We present here a simple model to exp
this for the case of light initially polarized at 45° to th
principal axes, and having a power and pulse width simila
that of a soliton in an isotropic medium. The full dynami
of energy exchange are quite complicated, so we here
centrate on determining the period of oscillation, and
amount of energy transferred during the first oscillation
riod.

To discuss energy exchange we define the quantities

qx~ t !5E
2`

1` uX~z,t !u2

vx
dz, ~72!
f
n-

n.
I,

i-
g

eat
ll
t
e
e
f
-

en
.
in
-
in

o

n-
e
-

qy~ t !5E
2`

1` uY~z,t !u2

vy
dz,

and we note that

qT5qx1qy , ~73!

is a constant of the motion. We recall that our fields a
normalized such thatuXu2,uYu2 represent power, but Eq.~64!
is best suited for integration in time, so that the natural qu
tity to calculate is that in Eq.~72!. The factors ofvx

5Vx18 , vy5Vy18 , Eq. ~64!, are necessary to makeqx ,qy

energies.
Using the form for the energy in thex polarized pulse~72!

we can calculate

]qx

]t
52 i

apc
x

vx
E

2`

1`

@Y2X* 2eilz2c.c.#dz, ~74!

]2qx

]t2
52

aPC
x

vx
E

2`

1`

@j22aPC
x ~ uXu22uYu2!#

3~Y2X* 2eilz1c.c.!dz14
aPC

x2

vx

3E uXu2uYu2~ uXu22uYu2!dz, ~75!

where

j5
~vx1vy!

2
l.

For small birefringences,l!1, so eilz'cos(lz)'1. We
write our fieldsX andY as

X~z,t !5Xr~z,t !eigxt, ~76!

Y~z,t !5Yr~z,t !eigyt, ~77!
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where the functionsXr(z,t), Yr(z,t) are real, and thegx,y
describe phase accumulation, which here is assumed i
pendent of space, and linear in time. Using these approxi
tions in Eqs.~74! and ~75! we find

]qx

]t
522

aPC
x

vx
E

2`

1`

Yr
2Xr*

2 sin~gt !dz5a sin~gt !, ~78!

]2qx

]t2
'22

aPC
x

vx
E

2`

1`

@j22aPC
x ~Xr

22Yr
2!#~Yr

2Xr*
2!cos~gt !dz

5b cos~gt !, ~79!

wherea andb have been defined implicitly, and where

g52~gy2gx!. ~80!

Note that in going from Eqs.~75!–~79! we have ignored the
third term in Eq.~75!. This is because we are only interest
in the dynamics during the first oscillation period, durin
which this term is small for the parameters of interest. W
now assume a cosinusoidal variation forqx(t) andqy(t):

qx~ t !5q̄x~12s cosgt !, ~81!

qy~ t !5q̄yS 11
q̄x

q̄y

s cosgt D ,

where, by conservation of energy,q̄y5qT2q̄x , and whereg
is the period, ands is the strength, of the oscillation.

By comparing the derivatives of the ansatz~81! with the
approximation~78!,~79!, we can identify the two quantities

g5
b

a
, s5

a2

q̄xb
. ~82!

To evaluate the quantitiesa andb, we make the further ap
proximation that only theamplitudeof the real part of the
pulse changes, not the spatial profile. In the following
assume a sech profile for our pulses

Xr~z,t !5X̄~z! sechS t

T0
Deigz, ~83!

Yr~z,t !5Ȳ~z! sechS t

T0
Deigyz. ~84!

Using these fields in the approximate expressions~78! and
~79! for the time derivatives, we can evaluate the expec
value of boths andg, the former as the root of a quadrat
equation, and the latter as a function ofs:

057.87aPC
x Ȳ0

2s21sS 4

3
aPC

x Ȳ0
22j D2

4

3
apc

x Ȳ0
2 ,

g5j2
16

5
aPC

x Ȳ0
2$s2s2%, ~85!

whereY0 is the initial amplitude of the pulse. The validity o
these approximations is demonstrated in Fig. 5 for a detun
e-
a-

e

d

g

D51.5, initial peak intensity of 0.55 G W/cm2 in each po-
larization, and various values of birefringence. At lower d
tunings there is an increased tendency to pulse separa
and, since the nonlinearity is higher, the approximation t
the fields pick up spatially independent phase is no lon
good. Higher energy exchange valuess, correspond to
higher periods, which means that devices wishing to exp
the energy exchange would have to trade off between de
length and amount of energy exchanged.

VIII. CONCLUSION

We have discussed the propagation of light through
strong grating structure in the presence of birefringence
a Kerr nonlinearity. The effect of the birefringence is
separate the photonic band gaps associated with the two
larizations. Far from the photonic band gaps, and even n
the gaps if the pulses are not too short, the electromagn
field can be well described by two coupled nonlinear Sch¨-
dinger equations, one associated with each polarization. H
the situation is somewhat similar to propagation in a o
dimensional~1D! structure without a grating, with the dis
persion due to the underlying material medium. But the gr
ing structure is richer in two respects. First, the tw
polarization modes can have both different group velocit
and different group velocity dispersions, whereas in unifo
1D structures differences in the group velocity dispersio
can typically be neglected. Second, the effective nonlinea
is a function of the carrier frequency of the pulse, since
depends on how the appropriate Bloch function samples
distribution of nonlinearity in the underlying medium.

At carrier frequencies close to the gap or within the ga
the electromagnetic field is described by two sets of coup
mode equations. The analog of a coupled mode descrip
in the absence of birefringence, here there is one pai
equations for each polarization. For a range of parame
either set of equations can be used, and we identified
conditions required for this and confirmed them with nume
cal examples. We also showed how the nonlinear Sch¨-
dinger equations could be used to provide a simple und
standing of one scenario of energy exchange between
two polarizations. It is clear from this, as well as from th

FIG. 5. Comparison of the period and strength of the nonlin
energy exchange in the CNLSEversusthe theory presented in th
paper, for a detuning ofD51.50.
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general form of the equations we derive, that whole n
regimes of nonlinear phenomena can appear when bire
gence exists in 1D photonic band-gap structures, includ
all-optical switching geometries that have no analog in i
tropic structures. Thus the derivation of the sets of equati
we presented here is of interest not only in its own right,
as a starting point for addressing what to date is the larg
s.

. B

o

i-
n-
g
-
s
t
ly

unexplored territory of birefringent, nonlinear photon
band-gap structures.
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